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The introduction of a pseudo-potential in crystal field theory is shown to lead to an expression for 
the orbital splittings which depend upon the squares of the group overlap integrals between the metal 
and ligand orbitals. A formula is derived whereby the group overlap integral can be directly expressed 
in terms of the diatomic sigma- and pi-lntegrals. 
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I. Introduction 

In this note we shall consider a transition from a pure crystal field treatment 
of an inorganic ion or molecule towards a molecular view. The use of pseudo- 
potentials has been shown [1] to lead to some simple and conceptually appealing 
models in other contexts. Here we shall attempt to show that it leads to a deeper 
understanding of the origin of the orbital separation in the ligand field theory. 
In particular, it will be demonstrated that the dependence of the orbital splittings 
upon the squares of the overlap integrals provides a supplement to, rather than a 
replacement [2] of, the usual crystal field effects. 

2. Theory 

Consider a metal nucleus, M, surrounding by L ligands, which are transformed 
into each other under the operations of some symmetry group, H, leaving M 
unaffected. The irreducible representations of this group are F1, F 2 .... , Fq, of 
dimensions vl, v 2 . . . . .  vq respectively, and we assume that the unitary matrices 
associated with these representations are defined by the transformation properties 
of some orthonormal set of functions, viz. 

~) .... ,~); �9 o ,Jql , . .  i). .. 
. . . . .  , . . .  ;A 

We shall then focus our attention on a fixed metal orbital, 2 d, and a normalized, 
symmetry adapted linear combination 

L 

= a,,2i ( i) 
i = i  
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of L equivalent ligand orbitals 2~ . . . .  ,2[. The functions 2 ~ and go~) are both 
assumed to transform like if) ,  and the symmetry involved is understood to be so 
high, that go~(J) is uniquely defined. 

Let us assume that a given electronic state of the complex consisting of M and 
the L ligands m a y  be characterized by some effective one-electron molecular 
Hamiltonian, F, of the Hartree-Fock type. 2 a and go}J) will then mix and produce 
a bonding molecular orbital, gOb, and an antibonding molecular orbital, gOa" 
Provided that the energy difference (}cdlff l)J)- (gOU)l/~'lgo(rJ)) is sufficiently large 
and positive, one finds to a good approximation, that 

and 

L 

gob = ~ a~,~!', (2) 
i=1 

goa= - 2 d Gj ~= ~ a~,2~ , 

where Gj is the group overlap integral 

(3) 

(4) 

Notice that the bonding orbital is unaffected by the complex formation, whereas 
the anti-bonding orbital, goa, is Schmidt orthogonalized to gob" 

We now take go. and gob to be reasonable approximations to the Hartree-Fock 
orbitals for the complex. Hence 

P go a = ,~ a go a , (5) 

F gob = eb gob " (6) 

Substituting (3) into (5) gives 

ff ( 2a - G J i~l air2f ) = e. ( 2a - G j =~ 1 ai,2f ) , (7) 

and using (2) and (6) yields further 

L 
Iw'~d "~ ('Sa - -  ~ b ) a j  Z air "~l~ = ~a ~'d " (8) 

i=1 

Equation (8) can be rewritten as 

(F + (7)2 a = ca2 a , (9) 

where (l is a so-called pseudo-potential having the form 

= (e, - eb) S dr: ~ goi')(2)*/~l :go~')(2). (10) 
i,s 

The summation in (10) includes all combinations of the type (1), that may be 
constructed from the orbitals 2~, ..., 2~, and /~la is an operator interchanging 
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electrons 1 and 2, such that 

01p(1) = (~a - eb) ~ (~0~i) I ~P) ~P~') (1). (11) 
i,s 

The definition of U runs parallel to that of the exchange operators appearing in 
Hartree-Fock theory. 

That Eqs. (8) and (9) are, in fact, equivalent is easily established, when it is 
noticed that all integrals (~p~i) 12 a) vanish due to symmetry, with the exception of 
(~07) 12 a) which is,in turn, equal to Gj. 

The operator U is a totally symmetric operator, and it plays a similar role to 
that of the crystal field potential, V, encountered in the usual crystal field theory 
[3]. When ligand-ligand overlap is neglected we get the still simpler expression 

0 = (ca - eb) ~ dr2 Z 2~'(2)*/5t z21'(2), (12) 
i 

due to the fact that the coefficients in (1) are the elements of a unitary matrix. 
Let us now consider the application of Eq. (8) to an octahedral complex, 

possessing Oh symmetry. The d-orbitals span a tzo and an e o representation, in 
the following denoted just t and e for the sake of simplicity. We get then, assuming 
that for both sets of orbitals we can set (Ca - 8b) ~ o - eML, that 

Ca(e) = (~ell~l~e) + ~~ z (13) 
and 

ea(t) = <21FI2 ) + ~~ , (14) 

with 2 e and 2 t being specific metal orbitals associated with the representations 
e and t, respectively. Hence 

ea(e) - to( t )= ( ~e[ v lAe) - ( }ct[ V[~ ' )  -b eOL(I Gel 2 -  16,12) (15) 

Note that for G, = 6 t ~-0, corresponding to the pure crystal-field model, we 
get the orbital energy difference which in that theory is called 10 Dq. The inclusion 
of a more realistic bonding scheme makes the orbital energy difference e,(e)-~a(t2) 
also dependent upon the squares of the group overlap integrals. Since (see next 
section) G 2 = 3S2(a, d,) and G 2 =4S2(Tz, d~) where S(a,d,)  and S(n, d~) are the 
usual diatomic sigma- and pi-overlap integrals [4], we get 

~a(e) -- ea(t2) = (2el VI2 ~) - (231VI2*) + e~ d~) - 4S2(rc, d,)). (16) 

The last parenthesis, like the crystal field term, is likely to be positive for an octa- 
hedral complex, since a diatomic sigma overlap is usually larger than a diatomic 
pi-overlap. The orbital energy difference must, however, not be identified [5] 
with the crystal field parameter 10 Dq. 

We have thus, at the present level of approximation, two co-operating po- 
tentials, V and U. We notice, however, that even though the pure crystal field 
theory breaks down, the formalism is unaltered. A semi-empirical theory can 
therefore do no better than to treat the orbital energy differences as adjustable 
parameters. Quantitative calculations based on U alone need certainly not be 
better than calculations in the pure crystal field theory, and attempts to make 
them seem so [6] must therefore be viewed with caution. 
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3. Evaluation of Group Overlap Integrals 

The relationship between a group overlap integral Gj and a diatomic overlap 
S(1, #) is given by [4, 7] 

Gr = 7rS(l, #) 

where 7r is a pure number. Consider now the various irreducible representations, 
F i, spanned by the metal orbitals, s(Fi), p(Fi,), d(Fi.) etc. Each of these sets of 
irreducible representations we shall call a metal set. Similarly, the L a-orbitals 
will span a sigma ligand set, a(Fi), the 2L rc-orbitals will span a pi ligand set, 
n(Ff), etc. Let us by ~ imderstand the number of representations which a given 
metal set and a given ligand set have in common. With Vr being the dimension of 
the representation F, we shall show the following relation for determining 7r: 

= iv ,  (18) 

where N is the number of orbitals in the ligand set, and the summation includes 
those x representations, which are shared between the metal and the ligand set. 

For instance, in an octahedral molecule, the sigma ligand set and the d-orbitals, 
have one common representation, viz. % Hence g = 1 and 27~ = 5; ~e = V ~. The 
u-ligand set and the d set also have z = l(t:0 ). Here 37~ = 12 or 7t = 2. 

In order to prove (18) let Rl(r)Ylm(O,q~) be a metal orbital centered in the 
xyz-coordinate system and let 2~' (i = 1, 2 . . .  L) be the ligand orbitals, centered at 
i (Fig. 1). All of the ligand functions transform into each other under suitable 
rotations of the xyz system, and 2~ has in the x'y'z' system a q; dependence given 
by e ~ ' .  Without any constraints we can expand 2~ in the x'y'z' coordinate system 
[83 

2~ = s Bv(r)Yv"(O', go'). (19) 
/'=0 

The Eulerian angles which take (x', y', z') into (x, y, z) are called (ai, fl~, 7i). Trans- 
forming (19) into the (x, y, z) system leads to 

l' 
2~= Y', Bt,(r) Z yl'm'( O' (,~ (20) 

l'=O m'= - l '  

iI / 

~/x ~ "~Y' 

:~y 

Fig. 1. The Co-ordinate Systems 
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where DCV)(a, fl~Ti) is a unitary rotation matrix. The overlap integral between 
Rz(r)Y{"(O, ~o) and 2~' is then 

l" 

(R(r )y lm(o ,  q~)l),~> = ~" ( R ( r ) l B r ( r ) )  y '  (Ytmlytm'>. Dcr)(a,fl,y,),,,u 
l ' = 0  m ' =  - l '  

= (R(r)lBt(r)) Dm(~ifliYi)mu �9 
(21) 

The overlap can therefore be written as a product of a quantity (R(r)lBz(r)) 
depending only upon the shells to which the orbitals belong and a quantity 
Dm(eifl~?~) depending only upon the position and orientation of the ligand or- 
bitals. 

We now define a standard overlap S u as the overlap between R(r)Yl"(0, ~o) 
and a ligand orbital located on the positive z-axis, such that x ' =  x, y ' =  y and 
z' = z. Hence 

S ~ = (R(r)Ytu(O, ~o)l ~ B,,(r)Yr~(O, q~)) = (R(r)lBt(r)) .  (22) 
/ ' = 0  

Using (21) and (22) yields: 

(R  (r) Y{" (0, q~)12~') = S*'Dq)(cq fli 2,),,,t,, (23) 

where S" = S ~, S =, Sa, .... 
Utilizing that Dm(oq, fl~,7~)is a unitary matrix gives 

l l 

[(R(r)Y{"(O, ~0)12~')12 = IS/t[ 2 ~ [D(t)(o~ifli~i)mtt[ 2 ~. [Sit[ 2 , (24) 
m =  - l  m =  - l  

and an additional summation over i yields 
L l 

~ I(R(r)Y{"(O,q~)12f)12=LlSU[ 2 �9 
i=l m=--l 

(25) 

We proceed by replacing the orbitals 2~, ;~ . . . .  2~ with a set of L linear combina- 
tions: 

L 

(Pi = ~ 2~aji, (i = 1, 2 . . . . .  L) (26) 
j = l  

where a is a unitary matrix. Then 

L L L L 

i = 1  j = l  k = l  i = 1  

z (27) 
= ~" l(iytm}).~)! 2 , 

j = i  

or by comparing (27) with (25) 

L l 

~. {(eY~"qqh)[Z= LlSU[2. (28) 
/ = 1  m=-l  
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We now suppose that the orbitals 2f (i = 1, 2 . . . . .  L) span a representation of 
the molecular point group H. These symmetry orbitals tp~ ) are then of the type 
(26), and according to (27) and (28) we can write 

l 
E Z Z [(R( r)Ytm(O, ~O)l~O~J)>lz= LIS(l,It)l 2, (29) 
j r m=-I 

where we have given S u one index more; S ~ S ( I ,  It), I indicating whether we have 
a s, p, d . . .  set; It differentiating between a, n, 6, .... 

The metal orbitals may likewise be characterized according to their irreducible 
representations. This leads to the orbitals ~p~'), and hence (29) is transformed to 

Z ~ ~ Z [ <~P~/')lq~, ~)) 12 = L IS(I, It) l 2 , (30) 
j ' r ' j r  

where the sum over j' takes care of the F ~3 components contained in the 21 + l 
metal orbitals. We have further 

Qp~4')l q~J)) = 6 ~j,J,r, G j (31) 

with Gj being the previously defined group overlap integral. Taking the Fj re- 
presentation to be Vr times degenerate, Eq. (30) together with (31) yields 

E(Vr G2) = LIS(I, It)j2, (32) 

where the summation extends over the irreducible representations common to 
the metal- and ligand orbitals. Inserting G r =  ?rS(l, It) in (32) concludes the 
proof of (18). 
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